TiO2 nanotubes and mesoporous silica as containers in self-healing epoxy coatings
نویسندگان
چکیده
The potential of inorganic nanomaterials as reservoirs for healing agents is presented here. Mesoporous silica (SBA-15) and TiO2 nanotubes (TNTs) were synthesized. Both epoxy-encapsulated TiO2 nanotubes and amine-immobilized mesoporous silica were incorporated into epoxy and subsequently coated on a carbon steel substrate. The encapsulated TiO2 nanotubes was quantitatively estimated using a 'dead pore ratio' calculation. The morphology of the composite coating was studied in detail using transmission electron microscopic (TEM) analysis. The self-healing ability of the coating was monitored using electrochemical impedance spectroscopy (EIS); the coating recovered 57% of its anticorrosive property in 5 days. The self-healing of the scratch on the coating was monitored using Scanning Electron Microscopy (SEM). The results confirmed that the epoxy pre-polymer was slowly released into the crack. The released epoxy pre-polymer came into contact with the amine immobilized in mesoporous silica and cross-linked to heal the scratch.
منابع مشابه
Effect of Incorporation of Inhibitor Loaded Mesoporous Silica on the Corrosion Behavior of Epoxy Coatings
In this research, mesoporous silica was applied as the host of corrosion inhibitor (molybdate). The loaded mesoporous silica was dispersed in an epoxy matrix. The composite was then coated on the mild steel plate. Results showed that the corrosion resistance of the scratched epoxy/mesoporous silica loaded by molybdate was better than the one without molybdate or neat epoxy. On the other hand, E...
متن کاملApplication of mesoporous silica containing benzotriazole in the epoxy coating applied to plain carbon steel and study of its corrosion behavior
The idea of smart inhibitors is based on the principle that an inhibitor is used where needed. This will reduce the use of inhibitors and protect materials in hostile environments. On the other hand, direct addition of the inhibitor within the coating can be harmful, resulting in the loss of inhibitors ability, deterioration in the coating or both of them. An appropriate method for solving thes...
متن کاملEpoxy Coatings Physically Cured with Hydroxyl-contained Silica Nanospheres and Halloysite nanotubes
Epoxy coatings are usually reinforced by the use of nanofillers, but reactive nanofillers having physical tendency towards epoxide ring opening are preferable. In this work, nanosilica (SiO2) and halloysite nanotubes (HNTs) known for their hydroxyl-contained surface are used and their effects on the curing behavior of an epoxy/amine coating is compared. The spherical and tubular nano...
متن کاملEffects of nano silica on the Anticorrosive properties of epoxy coatings
In this study a series of epoxy/silica nanocomposites were prepared by using nano silica particles which had different surface modifications. The morphology of the nanocomposite coatings was characterized by scanning electron microscopy SEM. The effects of the hydrophilic and hydrophobic feature of the nano particles on the Tg and anticorrosive properties of nanocomposite coatings were evaluate...
متن کاملIn vitro Investigation of Polymer Coated Magnesium Incorporated by Mesoporous Silica Nanocontainers
The idea of smart corrosion inhibition is basis on either inhibitor consumption where it is needed or reducing harmful matrix interaction with it. In addition, applying corrosion inhibitor in a coating causes many problems such as loss of inhibition capability, coating degradation, or both. A useful technique to overcome this problem is applying of inert host systems of nanometer dimensions as ...
متن کامل